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ABSTRACT

We develop an integrated approach to estimating wave-number parameters form a collection of local arrays
and fusing these estimators to obtain an accurate location, along with its uncertainty ellipse. A small-
array theory has been given in previous work that characterizes the detection probabilities and large sample
variances of the local optimal detectors and we show how to incorporate the results of the local-array per-
formance into a global network assessment. The wave-number estimators and their uncertainties are used
as input to a Bayesian nonlinear regression that produces fusion ellipses for event locations using probable
configurations of detecting stations in the global infrasound array proposed by the Prototype International
Data Center (PIDC). The network capability is characterized as a function of separate local-array character-
istics, including signal-to-noise ratios, bandwidth, array geometry, local correlation and coherent interfering
signals.
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OBJECTIVE

We are beginning a study to characterize the detection and location capabilities of the world-wide infrasound
arrays configured for the Prototype International Data Center (PIDC) network. The study will utilize results
of our previous work (see, for example, Blandford, 1997, Shumway et al, 1999) to characterize the detection
and wave-number estimation capabilities of local arrays. In that study (Shumway and Kim, 1999), we
have also developed fusion posterior probability ellipses for location that incorporate the two dimensional
covariance matrices of the wave-number vector, e.g., velocity and azimuth, for each of the local arrays.
The theory allows prediction of of a fusion ellipse for arbitrary configurations of recording arrays, under
assumed local signal-to-noise ratios, array geometry and signal decorrelations. Extending these results to a
full analysis of the detection and location capabilities of the PIDC network requires a two-stage approach,
consisting first of characterizing local-array detection and estimation uncertainty and then incorporating
these results into a detailed study of the detection and estimation capabilities of the full network.

Note that the theory is in place for following the above procedure through for perfectly correlated signals
and uncorrelated noise. A generalization being developed in this study is the extension of the local-array
performance capabilities to the case where there are coherent interfering signals or noises generated by
such local features as wind or microbaroms or by multiple arrivals occurring in the same time window.
If the local features are not readily available, this requires a multiple stochastic signal approach, where
the interfering signals may have either known or unknown coherence properties. We are covering both
the case where the interfering signals propagate according to some unknown velocity and azimuth and the
case where the coherence structure must be estimated from the currently observed data. Extension of
conventional stochastic signal models to the multiple signal case has been considered by Shumway (1983,
1988) and Shumway and Stoffer (2000). The above study should complete the characterization of local-array
performance for infrasound.

The second stage will incorporate the results of the local-array performance into a summary global-network
performance in terms of the uncertainty regions predicted by fusion ellipses. Usually, only a few arrays will
record any given event so that local detection probabilities must be combined to develop an overall average
fusion ellipse. In this study, we are expanding conventional network detection, as set out in Wirth (1976),
to develop an expected location contour map of the world that could be expected for the proposed PIDC
network. The network capability will be a function of separate inputs for each array, involving signal-to-noise
ratios, bandwidth parameters, array geometry, local correlation and coherent interfering signals.

RESEARCH ACCOMPLISHED

LocAL-ARRAY ESTIMATION AND DETECTION

In the case of a local array measuring a propagating plane wave from an infrasonic signal, we are generally
dealing with a small number of sensors and a model of the form

y;(t) = s;[t — T;(6)] + n;(t), (1)

corresponding to expressing the received process y;(t) as a signal s;(¢) imbedded in in a noise series n;(¢) on
each of j = 1,2,..., N sensors. The signal incurs a time delay 7}(8) at the j** sensor where 6 = (61,62)" is
a vector of wave-number parameters that are nonlinearly related to velocity and azimuth and to the source
location of the signal, say £ = (z1,22)’. It is the vector x that we are primarily interested in estimating,
where x; and z will denote latitude and longitude in km, based on some arbitrary origin. In Shumway et
al (1999), we have assumed that the signals had some correlation structure that could either be estimated
from data or could conform to the distance, frequency correlation structure advanced by Mack and Flinn
(1971). If the signals in (1) were perfectly correlated, replacing s;(¢) by the common signal s(¢) simplifies



results considerably, as shown in Shumway et al (1999).

As we will see later, what is needed is a theory that will lead to an optimum detector and a signal
detection probability for each local array. We also need an estimator for the wave-number vector 8 (velocity
and azimuth) and a variance-covariance matrix that will depend on bandwidth, signal-to-noise ratio and the
geometry of the local array. This has been done in Shumway et al (1999) under the two signal-correlation
structures mentioned above. Then, noting that the true wave-number vector is a known nonlinear function
of location, say @y (z) for the k** array, k = 1,2,...,n gives a set of values from which we may infer location
and a confidence or posterior probability ellipse for that location. This is covered in Shumway and Kim
(1999) for the case of a perfectly correlated signal.

In the new work, we are extending the above theory to the case where one or more interfering signals
are present. They may be generated by consistent wind effects (see Hedlin, 1998) or by ground, atmo-
spheric, stratospheric or thermispheric reflections (see Armstrong, 1998). Many times, separate phases can
be analyzed in isolation but it is also possible that more information will accrue from a broad time window
that increases the time-bandwidth product. For a simple double-signal example, suppose that the received
process is of the form

y;i(t) = s[(t = T;(0)] + u[t — Dj(7)] +n;(?), (2)

where u(t) represents a second interfering signal with an unknown set of time delays, depending on a second
set of wave-numbers v = (y1,72)" corresponding to an interfering signal, possibly generated by wind (see
Hedlin et al, 1998). While there there are models and computer code available (see, for example, Dighe et
al, 1998) for generating wind profiles at a given site as a function of weather conditions, the development of
a theory for a general interfering signal with unknown velocity and azimuth characteristics would still be a
useful exercise. In this proposal, we discuss isolating either a propagating signal or a signal with completely
unknown coherence structure. It should be noted that the restriction in (2) to just two unknown signals is
not necessary.

SIGNAL DETECTION

In order to handle the optimum signal detection problem, we review the results for a single signal with
unknown wave-number parameters that obtains when s;(t) = s(¢) in (1), namely, the case of a perfectly
correlated signal. The requisite theory follows from writing the model in the frequency domain and applying
the Whittle likelihood to obtain the optimum detector for testing the absence of a signal (see Shumway et
al, 1999) for details. For the likelihood ratio detector, we obtain a ratio of beam-power to noise power in the
neighborhood of a center frequency that is expressed as an F-Statistic of the form

- N'B(

Fe = SSE@®)’ ©)

introduced by Shumway (1983), where the numerator has the well-known beam-power and the denominator
is an estimated noise power, obtained by summing the squared deviations of each channel from the overall
beam. The parameter 0 is the maximizer of the beam-power and the log likelihood. It is commonly computed
by searching over the two-dimensional space spanned by the vector or over some suitable restricted space.
The distribution of the detector (3) is proportional to an F-statistic with 2BT and 2BT (N — 1) degrees of
freedom, where BT is the time-bandwidth product. That is

F(0) ~ (1+rN)Fyprapr(n-1) 4)

where ~ denotes is distributed as and
. (5)
r= P,



denotes the signal-to noise ratio, computed as the ratio of the signal power spectrum P; to the noise power
spectrum P, .

In the sequel, we propose extending the above theory to the model (2), possibly containing the interfering
signal. Portions of the requisite theory are available in Shumway and Stoffer (2000), where tests of hypotheses
involving multiple signals are developed from classical regression theory. It is clear that a stepwise approach
will be involved, with searches over # and - needed to find maximum likelihood estimators for those two
parameter vectors. An approach proposed for the fixed multiple-signal case is given in Shumway (1983) and
it is proposed that the approach be extended to the random signal case.

In the case that the simpler model (2) does not hold, we are also investigating the possibility of estimating
the propagation structure of the interfering interfering signals, using models of the form

g
y;(t) = s[(t —T;(9)] + Z Ajk (t — T)ug (1) +n;(8), (6)

k=1
where the unknown filters Ajx(¢) can be estimated using a generalization of factor analysis in the frequency
domain. For example, taking discrete Fourier transforms on both sides of (6) and vectorizing leads to a

frequency domain model of the form
Y=AS+AU+ N, (7

which can be recognized as factor analysis in the frequency domain and the estimated A may be a reasonable
approximation to some generalized modal structure in the frequency domain. The vector

A= (627rz'l/T1 (0)’ e 627r'iVTN (0))/

still contains the propagating plane wave. Of course, the bandwidth requirements of such a procedure are
fairly stringent and a limited number of modal components U; can be fitted for a small array.

OPTIMAL ESTIMATION OF WAVE-NUMBER PARAMETERS

Although the signal detection solution discussed in the previous section required maximum likelihood esti-
mators for the wave-number parameters, obtained by maximizing the beam-power in the uncorrelated signal
case, it is convenient to give a separate discussion of the problem of estimating the wave-number (velocity
and azimuth) parameters of a given local array. The main reason for needing this additional discussion is
to specify the array-dependent uncertainty of the estimated wave-number parameters which serve as critical
inputs for the location procedure. For any given source, it is clear that different recording arrays will have
wave-number estimators with different variances and covariances. Providing estimators of the differential
that can be attributed to differing values for signal-to-noise ratios, bandwidth and geometry of the array
will be important for determining the uncertainty region of the location procedure. It should be noted here
that additional variability due to geophysical causes other than those given above will be incorporated later,
in part, through a variance scaling factor introduced in the location model.

For the uncorrelated signal case, Shumway et al (1999) have obtained the large-sample covariance matrix
(Cramer-Rao Lower Bound) of the two-dimensional estimated wave-number vector @ as
1 1 1 1
YN ———-—(14+— )R} 8
(2m)2 2BT rN ( + rN) ®
where, in addition to depending on the signal-to-noise ratio r, the covariance matrix depends on the geometry

of the array, as determined by the sample covariance matrix of the sensor coordinates r; = (r;1,752)",j —
1,...,N, say

1 N
R =5 2=l =) ©)



Equations (8) and (9) exhibit several advantages that accrue when formulating location in terms of
the wave-number parameters §; and 62 rather than in terms of velocity and azimuth, which are more
complicated nonlinear functions of the location. Furthermore, for typical arrays, such as the ones illustrated
later, coordinates can be chosen so that the off-diagonal elements of R are zero, leading to uncorrelated
estimators for the two wave-number parameters. In the case of a correlated signal, this is not the case
and Shumway et al (1999) show what (8) becomes when one specifies the coherence matrix of the signals
in (1) but still uses the simple beam-forming estimator for 8. Detailed estimators for the variances of the
azimuth estimators as a function of array-baseline size have been computed in Shumway et al (1999). Those
computations show that the increase in variance attributable to signal decorrelation is not very substantial
over the frequency and array baseline distances contemplated for PIDC (see, also Armstrong, 1998).

In order to cover wave-number estimation and uncertainty for multiple signal models of the form (2), we
will need to extend the approach in Shumway et al (1999) to that more complicated model. The benefits from
such an extension will be estimators for the wave-number vector € that are uncontaminated by the interfering
signal u(t). We will also obtain estimators for the variance-covariance matrix of 8. As a by-product of the
estimation, there will be separate estimators of the wave-number parameters of the interfering signal and its
waveform. it should be noted that the estimator for the primary signal will no longer be the straight beam
and that the test statistic will no longer be a monotone function of the the beam power. Some examples of
multiple signal estimation in the deterministic signal case are given in Shumway (1983) and extensions to
the stochastic signal case are discussed in Shumway and Stoffer (2000).

RESEARCH ACCOMPLISHED

GLOBAL LOCATION CAPABILITIES

Integrating or fusing data from the single-array sources into a best overall location, with an uncertainty
region provided, will be an important aspect of evaluating the predicted performance of the PIDC network.
Hence, we consider a methodology for using the information developed in the detection and estimation
portions of this paper for estimating the location vector £ = (x1,22)’. In general, we propose a model of
the form

919 =0r(x) + e, (10)

where ék = (éug,ézk)l ,k=1,...,n is the estimated wave-number vector, as computed from maximizing the
beam-power, or F-statistic (3) at the k** array and

Vv T—c¢p

Op(zx) = L T =%
t®@) = Tl el

(11)

gives the theoretical connection between the wave-number parameters and location. In (11), v is the center
frequency, V is velocity and ¢x = (cix,cor)’ denote the coordinates of the k** array (||a|| = v/a? + a3 is
the norm of the vector a). It can generally be assumed that velocity is known or can be inferred from the
wave-number plot. It should be noted that there are often separate phases at the same array that may have
their own estimated @) and these are included under those that possibly contribute to the model (11). Under
certain conditions, there may also be estimators of travel times #j, where t;(x) = ||z — ¢ ||/V, perhaps from
cross-correlation or other means, that could be added to the observations on location .

A possible assumption for the bivariate error terms in (10) is that they are independent and identically
distributed with mean zero and 2 x 2 covariance matrix

cov e, = 02, (12)

where the matrix X comes from (8), specialized to the k'* array. Note that the components of (8) will vary
according to the array size and geometry, signal-to-noise ratio and the time-bandwidth product. The scaling



variance o2 is to account for additional variability from geophysical sources or from the observed error in

a particular event location. If there are consistent biases associated with particular regions or subsets of
arrays, constant correction terms can be added to the defining Equation (10). If a number of events are
available, the correction terms may even be estimated by least squares using consistent source-receiver pairs.
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Figure 1: Proposed PIDC infrasound arrays in the southwest quadrant and two hypothetical event locations

As an example of a small demonstration set, we consider Figure 1, which shows the 14 PIDC array
centers ¢ proposed for the southwest quadrant of the world-wide network. For purposes of illustration, we
also show two hypothetical events that might generate observed wave-number parameters ék, k=1,...,nfor
incorporation into the location model defined in (11) and (12). Later, we discuss an approach to combining
or fusing the wave-number parameters into an overall location, based on a given fixed set of recording arrays
and their characteristics, as defined by the signal-to-noise ratio r, the time-bandwidth product BT and the
array geometry, as it is expressed in terms of R and N in (8).

The solution for a fixed configuration of recording arrays is not the only factor of interest since there
will be multiple possible recording configurations possible for any given event. That is, the capability of
the network will be an expected value, accumulated over possible recording configurations, weighted by the
probability of each particular configuration. The resulting network capability can be contoured by setting an
event at each location on the world-wide grid and then computing the probability that each station detects
the event, given by (4). We may then compute a weighted average of some parameter reflecting the location
capability. For this discussion, we assume that the area of the 90% ellipse is of interest, where the ellipse
may be a confidence ellipse under classical assumptions or a posterior probability ellipse under the Bayesian
paradigm. We are estimating this kind of network capability using a method that essentially parallel the
Networth calculations made by Wirth et al (1976) in the case of seismic arrays.



BAYESIAN AND CLASSICAL METHODS FOR LOCATION

We extend the classical methods first to the case where we observe wave-number parameters and their
covariance matrix from n arrays and wish to combine or fuse the information into an overall location. The
nonlinear model (10) and (11) can be treated in the usual way. That is, expand 8(z) around some initial
value, say £ = xo and write a linearization as

05 — 01(z0) = Ar(2o)(z — o) + €x, (13)
where 50
Ay(z) = akf) (14)

is the usual 2 x 2 matrix of partial derivatives of 8;(z). Then, stacking the n, 2 x 1 wave-number vectors
and minimizing the weighted sum of squared errors can be done by successively estimating 8 = x — zg. This

leads to N
&=30+C '(z0) Y Ar(zo)' It B — Ok (mo)], (15)
k=1
where n
Clzo) = ) Ar(xo)' S Ax (o). (16)
k=1

It follows that the estimated covariance matrix of the final estimator is
cov & = o2 C™ 1 (%). (17)

Equations (10) and (11) exhibit the fusion estimators at each stage as pooled estimators over the n arrays
as long as the variances are known. We may also develop a confidence ellipse for the fusion estimators under
assumptions (A), (B) and (C), as given below.

(A) Variance Known: We may assume that the variance o2 is known, either from the statistical variances
of the computed wave-number estimators or from a combination of factors including the statistical
wave-number variances. In this case, the generalization of the usual chi-squared ellipse considered by
Evernden (1969) can be computed from the fact that

(z—%)'C&)(z - &) ~ 02, (18)

where ~ denotes is distributed as and x3 denotes a chi-squared distribution with 2 degrees of freedom.
Note that the statistical uncertainty of the wave-number estimators is already in the matrix ¥ so that
a plausible estimator for o2 in the absence of other factors might by unity.

(B) Variance Unknown: If variances are known only up to the constant o2, this scaling variance may be
estimated from the set of arrays that record the event. For the Gaussian case, the maximum likelihood
estimator is proportional to the unbiased estimator

o= z(Tl_l) > (85— 0:(@)) T (8 — 04 (2)). (19)
k=1

This case, originally considered in Flinn(1965), leads to a confidence interval based on the F-distribution,

namely
(.'): — ﬁ:)'C(ﬁ:)(z — i) ~ 2S2F2,2(n,1), (20)

where F} 5(,,_1) denotes the F-distribution with 2 and 2(n — 1) degrees of freedom.
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Figure 2: Possible prior distributions for standard deviations of measured wave-number estimates

(C) Variance Subject to Prior Distribution: It is often the case that it is unrealistic to assume that
the variance is known exactly because (18) becomes too small. For a small number of arrays, the ellipse
based on the F-statistic (20) is often much too large. A useful compromise, introduced by Jordan and
Sverdrup (1981)and continued by Bratt and Bache (1988), is to quantify the initial uncertainty about
o? by assigning it a prior distribution with density function 7(0?). It is convenient to use the inverted
chi-squared distribution with parameters m, representing the equivalent sample size embodied in the
prior information and o2, representing a prior centering value for the variance. Figure 2 plots the
density function for the standard deviation o for o9 =1 and m = 10,30. We note that the two values
put the standard deviation between .4 and 2 for m = 10 and between .6 and 1.6 for m = 30 For a fully
Bayesian approach, we assume a non-informative prior on (—oco < 1,22 < 00) for the location z and
compute the posterior distribution, given the wave-number observations, as a bivariate t-distribution
with 2 and 2(n — 1) + m degrees of freedom. The posterior estimator for the variance is

2 2(n—1)s* + mod
2n—-1)+m

(21)

implying that the best approach is simply to pool the initial variance 03 and the sample variance
s2, weighted by their degrees of freedom. The quadratic form involving the location vector z in the
multivariate t has an F-distribution, making the 95% posterior probability ellipse for the location
expressible as

(z—2)'C(&)(z— %) ~ 20 F3 5(n—1)4m (22)

It is interesting that the form of the posterior probability ellipse (18) is similar to (20) but will be tighter
because of the additional degrees of freedom for the F-statistic. Hence, the Bayesian solution represents a
compromise between (18) and (20), the methods of (A) and (B).

CONCLUSIONS AND RECOMMENDATIONS

DEVELOPMENT OF GLOBAL NETWORK PERFORMANCE MEASURES

We are proposing to combine the theoretical information available from the previous sections into an overall
assessment of expected global network performance. Since there will likely be relatively few stations recording
each event, we will make computations based on the Bayesian posterior probability interval given by (22).



The natural measure to use for the overall analysis will be the area of the ellipse, taken here to be the area
of the 90% posterior probability ellipse.

First, consider the area for a fixed event location and a specified set of detecting arrays. Crucial inputs
are as follows:

SIGNAL-TO-NOISE RATIO

The signal-to-noise ratio r should be determined for each array recording a signal from that particular
location. One option is to just assume a value, based on experience, or to sample randomly from an
assumed distribution of values. Given an observed event and a recording station, estimation of the signal
and noise spectra by maximum likelihood is solved in Shumway et al (1999) for both perfectly correlated
and decorrelated signals. These estimators can be used directly if events and recordings are available. In
the example given here, we arbitrarily take signal-to-noise ratios of r = 2, 3.

ARRAY GEOMETRY

The geometry of each array affects the detection probability for that array and the accuracy of the input
wave-number 0y, (z), large through N, the number of sensors and R, the sample covariance matrix of the
array. Again, Shumway et al (1999) show expressions for the estimated variance under the two different
assumptions for correlation. In the example that comes next we used two array geometries; the first was a
triangle with baseline 1km and a center element; the second was the first triangular array with an additional
inverted inner triangle with baseline distance .2km (see Blandford, 1997).

TiME-BANDWIDTH PrODUCT, CENTER FREQUENCY, VELOCITY

The time-bandwidth product BT will depend on the assumed frequency band containing the signal and
the length of the signal window. We assumed here a center frequency of 1 Hz and a time-bandwidth product
of BT = 17, which represented a reasonable compromise from our earlier work (Shumway et all, 1999) with
a Pacific Islands event. Velocity was assumed to be .3 km/sec in the example.

Note that the values of r and N in the preceding discussion are sufficient for computing the detection
probability at a fixed false alarm rate from the F-distribution given by (4). The input covariance matrix
¥, can be computed from (8), using an array assumption and a configuration of recording stations. For the
posterior probability ellipse (22) we require an assumed location £ which we took as the two events marked
with + in Figure 1. This leads to a value for the matrix C(z) in (16). As assumptions for the prior scaling
variance and its uncertainty, we took o2 = 1 and m = 10, assuming the sample variance s? = 1.

Figure 3 shows the predicted posterior 90 and 95% ellipses for the locations of the two events, assuming
various recording array configurations (see also Table 1). We note that ellipses produce reasonably satisfac-
tory regions for a small number of arrays detecting but that the areas are still not up to the often-mentioned
standard of areas less than 1000 km? at 90% confidence. Of course, this could be achieved by increasing
the assumed time-bandwidth product or the signal-to-noise ratio or by changing the nature of the recording
array. Table 1 gives a short introduction to what might happen under various scenarios. Increasing the
number of elements in the array decreases the area by approximately 10%; increasing the signal-to-noise
ratio 2 to 3 leads to reductions of about 40%. Assuming that there are more detecting arrays also has a
fairly substantial effect.

Finally, we plan to develop an expression for the average area expected over all possible configurations of
detecting arrays. That is, define a detection indicator Dy, that is one if the array detects and is zero otherwise,
for the full set of possible detecting arrays, say, for k =1,2,..., K of them. If we define p;, = Pr{D;, = 1},
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Figure 3: Posterior probability (90 and 95%) ellipses for various array detection configurations assuming
T-element arrays, perfect signal correlation and a single channel S/N = 2.

the joint density of the random variables Dy, Ds, ..., Dg would be

K
P(Dy,...,Dy) = [] p* (1 —pi)t 2. (23)
k=1

The probabilities can be arbitrary for each station, based on recorded data, but our preferred approach is
to use the estimated probabilities computed from the result (4). Now, for any given event, we can observe
2K possible configurations of detecting stations and each one of them will give a predicted area. We can
multiply each configuration probability by its area and add them up to get the average areas of location for
that particular source. Alternately, and perhaps, easier would be to simulate values of D, ..., Dk repeatedly
and simply average the resulting areas. In either case, it is clear that a relatively small computing effort will
yield an average predicted 90% uncertainty area for each location. Plotting contours on the map will give
us an index of global network performance.

Table 1: Areas (km?) of 90% Posterior Probability Ellipses for Simple and Extended Triangular Arrays

Triangular  Array | Extended Array
Stations/Event Sy =2 Sy=3| Syn=2 Sy=3

5,8/1 5554 3566 5087 3316
5,8,10/1 4448 2856 4074 2656
4,12,13/2 3129 2002 2858 1863

1,2,4,11,12,13/2 2176 1397 1992 1299
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